Closing Thurs: $\quad 1.6$
Closing Tues: $\quad 2.1$
Closing Next Thurs: 2.2, 2.3(part 1)
Midterm 1 will be returned Tuesday.
On the notecard put:

1. Your name (first \& last)
2. Your quiz section
3. One questions about the current material or the course.
Remember to hand these in by the end of class for attendance credit.

2.1 Quadratics

Entry Task: An algebra warm up

1. Solve
(a) $w^{2}=25$
(b) $3 q^{2}-1=11$
(c) $(z-1)^{2}=7$
2. Expand out these expression:
(a) $(x-3)(x-4)=$
(b) $(x+5)(x-6)=$
(c) $(x-7)^{2}=$
(d) $(A+B)^{2}=$
3. For this class, you can get away without knowing how to factor, but many problems are easier and faster if you can factor.
Try these (fill in the numbers):

$$
\begin{aligned}
& x^{2}-8 x+16=(x-\quad)(x-\quad) \\
& x^{2}+9 x+20=(x+\quad)(x+\quad)
\end{aligned}
$$

A quadratic function can be written in the form:

$$
y=a x^{2}+b x+c
$$

The graph of a quadratic function is called a parabola.

For example:

$$
\begin{aligned}
& y=-5 x^{2}+20 x+30 . \\
& \mathrm{a}=\quad, \mathrm{b}=\quad, \mathrm{c}= \\
& f(x)=4+2 x^{2} . \\
& \mathrm{a}=\quad, \mathrm{b}=\quad, \mathrm{c}= \\
& P(q)=\left(10 q-5 q^{2}\right)-(3 q+6) . \\
& \mathrm{a}=\quad, \mathrm{b}=\quad, \mathrm{c}=
\end{aligned}
$$

A brief motivation:

1. If $x=$ quantity, and

$$
p=105-0.1 x=\text { price (demand) }
$$

then

$$
\begin{array}{rlrl}
\operatorname{TR}(x) & =(105-0.1 x) x & & \text { (why?) } \\
& =105 x-0.1 x^{2} & & \text { (why?) } \\
\mathrm{a}=\quad, \mathrm{b}=\quad, \mathrm{c}= &
\end{array}
$$

It's fairly common for TR, Profit and/or AVC to be quadratic.
2. Projectiles. Throw an object in air. Example: A ball is thrown in the air from an initial height of 6 ft with an initial upward velocity of $20 \mathrm{ft} / \mathrm{s}$.
The height in feet is given by

$$
\begin{aligned}
& h(t)=6+20 t-32 t^{2} \\
& \mathrm{a}=\quad, \mathrm{b}=\quad, \mathrm{c}=
\end{aligned}
$$

Parabola Basics

If a is negative, the parabola opens downward. For example:

$$
y=-5 x^{2}+20 x+30
$$

Note: A quadratic equation is an equation that can be written in the form

$$
a x^{2}+b x+c=0
$$

If a is positive, the parabola opens upward. For example:

$$
y=2 x^{2}+28 x+4
$$

The solution(s) to $a x^{2}+b x+c=0$ are given by the quadratic formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Faster to solve, if you can factor:

$$
\begin{aligned}
2 x^{2}+12 x+40 & =54 \\
x^{2}+6 x+20 & =27 \\
x^{2}+6 x-7 & =0 \\
(x-1)(x+7) & =0
\end{aligned}
$$

Thus,

$$
\begin{array}{cll}
x-1=0 & \text { or } & x+7=0 \\
x=1 & \text { or } & x=-7 \\
\hline
\end{array}
$$

A general solving method:
(Doesn't have to memorize a formula)

$$
\begin{gathered}
2 x^{2}+12 x+40=54 \\
x^{2}+6 x+20=27
\end{gathered}
$$

Completing the square gives

$$
\begin{gathered}
x^{2}+6 x+9-9=7 \\
(x+3)^{2}-9=7 \\
(x+3)^{2}=16 \\
x+3=4 \text { or } x+3=-4 \\
x=1 \text { or } x=-7
\end{gathered}
$$

The following will always work as well. Solving with the quadratic formula:

$$
\begin{gathered}
2 x^{2}+12 x+40=54 \\
x^{2}+6 x+20=27 \\
x^{2}+6 x-7=0 \\
x=\frac{-(6) \pm \sqrt{(6)^{2}-4(1)(-7)}}{(2(1))} \\
=\frac{-6 \pm \sqrt{26+28}}{2} \\
= \\
\frac{-6 \pm \sqrt{64}}{2}=\frac{-6 \pm 8}{2}
\end{gathered}
$$

Thus,
$x=\frac{-6+8}{2}=1$ or $x=\frac{-6-8}{2}=-7$
You can use any of these 3 methods! All give the same answer.

For your own interest

(Don't need to write this down)

Derivation of the quadratic formula:

$$
\begin{aligned}
& a x^{2}+b x+c=0 \\
& x^{2}+\frac{b}{a} x+\frac{c}{a}=0
\end{aligned}
$$

Completing the square:

$$
\begin{gathered}
x^{2}+\frac{b}{a} x+\frac{b^{2}}{4 a^{2}}-\frac{b^{2}}{4 a^{2}}+\frac{c}{a}=0 \\
\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}}{4 a^{2}}-\frac{c}{a} \\
\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}}{4 a^{2}}-\frac{4 a c}{4 a^{2}} \\
\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}-4 a c}{4 a^{2}} \\
x+\frac{b}{2 a}=\frac{ \pm \sqrt{b^{2}-4 a c}}{2 a} \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{gathered}
$$

Method for solving quadratic equations:
Given a quadratic equation (an equation has only one variable, an equal sign, there is no y or $f(x)$)

1. Simplify/Clear denominators.
2. Subtract to make one side zero. You will have something like:

$$
a x^{2}+b x+c=0
$$

3. Use the quadratic formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Solve:

1. $x^{2}-7 x=0$
2. $7+2 x-2 x^{2}=4+x$

$$
\text { 3. } \frac{x}{3}-4 x^{2}=2 x-1
$$

Note (looking under the radical): If $b^{2}-4 a c>0$, then two solutions. If $b^{2}-4 a c=0$, then one solution. If $b^{2}-4 a c<0$, then no solutions.

Method for finding the vertex:

Given a quadratic function (there are two variables, input/output, and you want to find the vertex):
$\quad y=a x^{2}+b x+c$
or
$f(x)=a x^{2}+b x+c$
The x-coordinate of the vertex is at:

$$
x=-\frac{b}{2 a}
$$

Find the x and y coordinates of the vertex for (note that these are NOT equations, they are functions):

1. $y=30-5 x^{2}+20 x$.
2. $y=42 x-x^{2}$

Example: (A preview of next week) This is what you are doing in the first 6 questions in the 2.3 homework.

Suppose total revenue (TR) and total cost (TC) are given by

$$
R(x)=42 x-x^{2} \text { and } C(x)=50+3 x
$$ where $\quad x$ is in hundred items and $R(x), C(x)$ are in hundred dollars.

(a) At what quantity is TR maximum?
(b) What is the maximum TR?
(c) Find the break-even points (i.e. quantities where profit is zero). This is not the same as breakeven price!
(d) What quantity maximizes profit?

